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ARTICLE DETAILS ABSTRACT

This study introduces and evaluates a bootstrap-enhanced Feasible Generalized Least Squares (FGLS)
estimator designed to improve econometric inference under conditions of heteroskedasticity and
autocorrelation. Using both simulated and secondary datasets, the performance of the bootstrap-enhanced
FGLS is compared with the traditional FGLS method across varying sample sizes. Results indicate that the
bootstrap approach substantially reduces bias and root mean square error (RMSE), particularly in small to
moderate samples. Additionally, standard errors of coefficient estimates are more stable under the bootstrap
approach, especially in the presence of complex error structures such as multicollinearity and spatial
correlation. The study also validates the method’s applicability across diverse empirical domains, including
macroeconomic indicators, demographic data, and spatial datasets. Findings reinforce the diagnostic power
and efficiency of bootstrap resampling in improving estimator precision, making it a robust alternative to
classical methods in econometric modelling. Policy recommendations emphasize the need for resampling-
based strategies in economic planning and forecasting when data irregularities challenge traditional
assumptions.
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datasets, especially under varying sample sizes and real-world
econometric conditions.

1. INTRODUCTION

Accurate and efficient parameter estimation is central to econometric
modelling, especially when data exhibit characteristics such as
heteroskedasticity, autocorrelation, or multicollinearity. In practical
applications ranging from macroeconomics to spatial modelling and
health economics, the assumptions of classical Ordinary Least Squares

The review of recent literature showed that FGLS has been extensively
applied to handle heteroskedasticity and autocorrelation in panel data and
cross-sectional analyses, with studies highlighting its efficiency in
modelling autocorrelated errors and correlated genetic traits (Somer etal.,
2022; Xiong et al, 2024). Applications in environmental economics,

(OLS) estimation are often violated, leading to inefficient or biased
estimators and unreliable statistical inference. To address these concerns,
the Feasible Generalized Least Squares (FGLS) estimator was introduced
as a modification of the Generalized Least Squares (GLS), adapting to
unknown error structures by estimating the covariance matrix from the
data (Hunjra et al,, 2022; Marzouki et al., 2023). However, traditional FGLS
remains vulnerable in small sample sizes, non-normal residuals, and
complex model structures, where asymptotic properties are less reliable.

To overcome these challenges, bootstrap methods have gained
considerable attention in modern econometric analysis. Bootstrap
techniques originating from the seminal work offer a data-driven
resampling approach that strengthens inference, especially under finite
sample conditions and model uncertainty (Efron and Tibshirani, 1993).
Recent literature has illustrated the power of bootstrap-enhanced
estimation in improving confidence interval coverage, reducing small-
sample bias, and mitigating model misspecification effects (Horowitz,
2019; Moundigbaye et al.,, 2020; Uehara, 2023). These advantages make
bootstrap-enhanced methods particularly valuable when analyzing data
with unknown or non-constant variance-covariance structures. Despite
this promise, limited work has systematically evaluated the integration of
bootstrap methods into FGLS estimation across simulated and empirical
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corporate governance, and sustainable growth further illustrate its
robustness (Massagony et al., 2023; Marzouki et al,, 2023; Hunjra et al,,
2022). Similarly, they demonstrated their utility in modelling energy
efficiency and environmental sustainability (Wei et al., 2020; Addai et al.,
2023).

FGLS has also been integrated with Bayesian techniques and enhanced
through resampling-based inference such as bootstrap (Moundigbaye et
al,, 2020; Xie et al,, 2020). Bootstrap-enhanced FGLS methods have proven
particularly beneficial for small-sample inference, offering more accurate
standard errors and confidence intervals than traditional asymptotic
methods (Horowitz, 2019; Chang, 2020; Hill, 2021). Bootstrap variants
have also improved model comparisons, parameter estimation in spatial
models, and model reliability under model misspecification (Uehara,
2023; Esmaeli-Ayan et al., 2022; Itiveh and Aronu, 2025).

Numerous studies demonstrate the bootstrap’s wide-ranging
applicability. For instance, in complex network modelling, implemented
vertex and patchwork bootstrap in R; while in finance, applied neural-
network-enhanced bootstrap for Sharpe ratio inference Chen et al.,, 2019;
Allena, 2021). Bootstrap has also been used for S-N curve modelling,
environmental safety, and quantum mechanics (Aikawa etal.,, 2022; Zhang
et al, 2022; Huang et al,, 2019). Comparative studies reveal the superior
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performance of structured block and ordered bootstrap variants over
standard techniques (Bee et al., 2021; Beyaztas and Firuzan, 2021).

In summary, the FGLS framework remains foundational in econometrics,
especially when corrected via bootstrap techniques to overcome finite-
sample biases, improve predictive reliability, and provide robust
inference. The methodological innovations discussed reaffirm the
synergistic value of FGLS and bootstrap approaches across fields like
health, energy, spatial statistics, and financial econometrics.

This study seeks to bridge this methodological gap by developing and
empirically evaluating a bootstrap-enhanced Feasible Generalized Least
Squares (FGLS) estimator. It examines how the bootstrap-integrated
approach compares with the traditional FGLS in terms of coefficient
accuracy, bias, root mean square error (RMSE), and standard errors.
Building on the foundational works of, and drawing from recent empirical
validations, the study explores the efficiency, robustness, and practical
reliability of the bootstrap-enhanced estimator under different data
complexities, including multicollinearity, spatial correlation, and small
sample variability (Greene, 2018; Wooldridge, 2013; Judge et al,, 1985;
Zhang et al,, 2022; Xiong et al.,, 2024).

This study aims to develop a bootstrap-enhanced Feasible Generalized
Least Squares (FGLS) estimation technique to strengthen inference in the
presence of heteroskedasticity and autocorrelation. It evaluates and
compares the performance of traditional FGLS and bootstrap-integrated
FGLS across varying sample sizes using simulated data, while also applying
both techniques to real-world datasets to analyze differences in coefficient
estimates, standard errors, bias, and RMSE. The research further assesses
the robustness and reliability of the bootstrap-based estimator under
econometric challenges such as multicollinearity, spatial correlation, and
small samples. Additionally, it investigates the implications of bootstrap-
derived variance and confidence intervals for improved econometric
modelling and hypothesis testing. By aligning theoretical insights with
empirical validation, this study contributes a robust framework for
improving inference in econometric applications where traditional
assumptions fail. The integrated approach proposed herein offers a
statistically sound and practically relevant solution to the persistent
challenges of estimator efficiency and reliability in econometrics.

1.1 Conceptual Framework

The conceptual framework of this study is rooted in the intersection of
robust regression analysis, resampling methods, and econometric
efficiency enhancement. Traditional FGLS addresses heteroskedasticity
and autocorrelation by transforming the model using an estimated
covariance structure. However, its reliability deteriorates under model
misspecification or small sample conditions. The bootstrap method, by
resampling residuals, provides an empirical distribution of estimates,
enabling better standard error estimation and confidence interval
construction without strong distributional assumptions.

This study integrates both approaches to form a hybrid estimation
framework. The Bootstrap FGLS technique leverages the transformation
capabilities of FGLS and the resampling strength of bootstrap methods,
improving estimator efficiency and robustness, especially in complex or
misspecified models. The framework evaluates estimator performance
using both simulated and real-world data, examining consistency,
precision, and inferential validity.

methods under heteroskedat-
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Figure 1: Conceptual Framework for Evaluating Bootstrap-Integrated
FGLS Estimation under Autocorrelation and Heteroskedasticity

The conceptual framework in Figure 1 illustrates a two-pronged empirical
strategy involving simulated data and real-world datasets to evaluate
regression estimators under heteroskedastic and autocorrelated
conditions. Simulated data are generated using linear regression models
with autoregressive error structures (AR(1)), enabling controlled
assessment of estimation techniques across varying sample sizes. Real-
world data from the Central Bank of Nigeria, the World Bank, and ILOSTAT

represent practical econometric challenges, including multicollinearity
and structural complexity (Greene, 2018; Wooldridge, 2013). Both data
streams feed into the implementation of the Bootstrap-integrated Feasible
Generalised Least Squares (FGLS) estimation procedure, designed to
enhance robustness and inference reliability. The framework highlights
the iterative resampling mechanism central to the bootstrap, which
estimates empirical distributions for model coefficients and variance-
covariance matrices. Outputs such as bias, RMSE, and standard errors are
used to validate estimator performance. The framework emphasizes the
methodological synergy of non-parametric resampling and feasible
covariance adjustment in improving precision, particularly under small-
sample and model-misspecification scenarios. This approach provides a
comprehensive diagnostic path for robust inference in complex
econometric models.

2. RESEARCH METHOD

This section presents the methodological foundation of the study, detailing
the origin and nature of both simulated and real-world data used for model
evaluation. It further introduces an enhanced estimation technique,
Bootstrap-integrated Feasible Generalised Least Squares (FGLS), designed
to improve inference under heteroskedasticity and autocorrelation. The
proposed hybrid framework aims to ensure robust estimation and reliable
confidence intervals, especially in complex regression settings.

2.1 Source of Data

This study utilized both simulated and secondary data sources. The
simulated dataset was generated using random normal distributions for
various sample sizes (n = 10 to 500) to evaluate linear regression with
autocorrelated errors. An AR(1) process with a coefficient of 0.7
introduced autocorrelation in the error term, with the response variable
derived from a linear combination of predictors and the AR error.
Secondary data included real-world macroeconomic indicators sourced
from the Central Bank of Nigeria Statistical Bulletin (2021), World Bank,
and ILOSTAT, covering Unemployment Rate, Growth Rate, and Population
from 1970 to 2021 (50 x 3). Additional datasets from R repositories were
also used: (i) Longley for multicollinearity studies; (ii) mtcars for
regression and exploratory analysis in automotive data; (iii) Swiss fertility
data (1888) for socio-demographic insights; and (iv) Columbus spatial
data for urban socioeconomic mapping in GIS-based analysis. These
datasets were selected for their methodological relevance and ability to
illustrate various statistical challenges including multicollinearity, spatial
correlation, and real-world heterogeneity.

2.2 Method of Data Analysis

This section introduces a robust enhancement of Feasible Generalized
Least Squares (FGLS) using the bootstrap method. By integrating
empirical resampling into the classical FGLS framework, we address
critical limitations arising from heteroskedasticity, autocorrelation, and
small sample bias. The proposed approach aims to improve estimation
efficiency and inference reliability under conditions of model
misspecification and unknown error structures.

2.2.1 The proposed Bootstrap method with Feasible Generalized Least
Squares (FGLS)

In classical regression analysis, Feasible Generalized Least Squares (FGLS)
addresses heteroskedasticity and autocorrelation by transforming the
regression model such that the transformed errors are homoskedastic and
uncorrelated. However, FGLS estimators can be biased or inefficient when
the true covariance structure of the errors is unknown or misspecified,
especially in small samples (Greene, 2018; Wooldridge, 2013). To enhance
the robustness of FGLS, particularly under model misspecification or non-
normal errors, bootstrap methods which rely on resampling from the
empirical distribution of residuals can be applied. While classical FGLS
assumes a known and well-estimated error covariance structure, the
bootstrap-enhanced FGLS resamples from the empirical residual
distribution to capture variability and improve inference, especially under
small sample sizes and model misspecification.

Hence, we consider bridging the Bootstrap method with Feasible
Generalized Least Squares (FGLS) with aim of strengthen both techniques
to provide robust estimates and inference in the presence of
heteroskedasticity and autocorrelation in regression models. The
Bootstrap method is a resampling technique used to estimate the
distribution of a statistic by repeatedly sampling from the data with
replacement. It can provide robust standard errors and confidence
intervals for model parameters, even when traditional assumptions (e.g.,
normality of errors) do not hold.
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Consider the linear regression model:
y=XB+e€ €Y)
where:

yisannx 1 column vector representing the response variable and n is the
number of observation;

X is n x k matrix representing the predictors, while k is the number of
predictors (including a column of ones if an intercept term is included in
the model);

[ is a k x 1 column vector of coefficients corresponding to each of the k
predictors.

e isannx 1 column vector that represents the residuals or the differences
between the observed values and the values predicted by the model.

Equation (1) is commonly estimated via the Ordinary Least Squares (OLS)
estimator:

Bows = XTX)71XTy (2)

where, T represent the transpose function and X7 represents the
transpose of X.

The OLS residuals are calculated as:
E=y-— XBOLS (3)

For the new bootstrap method, we shall consider creating B bootstrap
samples by resampling with replacement from the residuals € and the
corresponding X values as expressed in equation (3). Given each bootstrap
sample b (where b=1, 2,..., B) and then generate new response variables:

y® = XBors + € 4
é® is a resampled version of the residuals.

Hence, the estimate of the FGLS for each Bootstrap Sample can be
computed as:

Bors = (X" XTy®) 5)
Note that 3(5’;’5 is an OLS estimate obtained from the b* bootstrap sample.
The residuals for Bootstrap Sample can then be computed as:

A A

0 = y® — XBo (6)

The estimate of the Variance-Covariance Matrix for the FGLS model Q can
be obtained as:

i If heteroskedasticity is present, estimate the variance for each
observation:

. 50 — g 202 A1) Ab)?

il. O®) = diagonal (€, ,€,7 ,-, €, (7

jii. If autocorrelation is present, estimate the autocorrelation

structure, e.g,, using an AR(1) process:
v. e =pe® +u, (8)
Sraee?)

~(b)2
i, eE_)I

V. Where, p =
Hence, if both heteroskedasticity and autocorrelation are present, Newey-
West or HAC estimators of Q® will be more appropriate.

The estimate of the FGLS for the Bootstrap sample is given as:

~(b ~ -1 -1 =1
IEG)LS = (XTQ(b) X) XTa®y® 9

The mean of the Bootstrap FGLS Estimates is computed as:

pBootstrap _ 1 «p 5(b)
FGLS B b=1BFGLS (10)

The Standard Errors of the Bootstrap FGLS Estimates is computed as:

5B 1 5 5B 2
SE(Brers™") = J— 5o (Bross — Bravs ™) (11)

2.2.2 Confidence Intervals for the FGLS Estimator for the bootstrap
sample

Using the variance derived earlier, we can construct confidence intervals
for the FGLS estimator. Assuming the errors are normally distributed, the

confidence interval for the ith element ofﬁé?w can be constructed as:

A;I(J;)Ls,i = iz(;ﬁ) [var(ﬁ;?m ]ii (12)

Where, Z(g) is the critical value from the standard normal distribution for
2

the desired confidence level.

2.2.3 The relationship between the variances of the OLS estimator,
FGLS estimator, and the FGLS Estimator for the bootstrap sample

To assess theoretically the efficiency gains of FGLS estimator for the
bootstrap sample over the OLS estimator, one can derive the ratio of their
variances as given:

var(B) 2T~ 2% Ty -1 xTHB !
= — = X' X)7'x'Q X 13
wa(8) ~ Graor) 0 KN (13)

This expression presented in equation (13) shows the relationship
between the variances of the OLS and FGLS estimators for the bootstrap
sample, emphasizing the role of the covariance matrix O®) in adjusting for
heteroskedasticity or autocorrelation in the errors. This ratio captures the
relative efficiency gain of FGLS over OLS by adjusting the variance
structure via O®. When O® accurately estimates the true covariance
structure, the FGLS estimator exhibits lower variance than OLS.

Also, we derive the theoretical relationship between the variances of the
Feasible Generalized Least Squares (FGLS) estimator and the FGLS
estimator for the bootstrap sample as given:

var(BroLs) UZ(XTﬂ_lx)_l 2(vTo-1yv\-1yTH(b)™!
= — =c2(XTQ 1 X)"1XxTaW " x 14
var(B%s)  (xTa®rix) ¢ ) (14)

The term o2 in equation (14) acts as a scaling factor for the entire
expression. This indicates the role of the error variance in the overall
variability of the estimator, indicating that the variance of the FGLS
estimator is directly proportional to the variance of the error term in the
model. The combination of Q7! and Q®" suggests robustness to
heteroskedasticity and autocorrelation in the expression. The FGLS
estimator is specifically designed to address these issues, and the result
confirms that this robustness is maintained even when considering
bootstrap samples. This ratio, if >1, shows that FGLS provides efficiency
gains over OLS (Judge et al,, 1985).

The result provides insight into the fit and specification of the model. If
O®™ closely approximates Q7% the term o2 (XTQ™1X) "1 XTAM ™ X will be
close to the identity matrix, indicating a good fit. Deviations from the
identity matrix can signal model misspecification or differences between
the theoretical and empirical covariance structures. This showcases the
uniqueness of the FGLS for the bootstrap samples because it encapsulates
the interaction between theoretical and empirical covariance structures,
as well as reflecting the impact of bootstrap sampling, and provides
insights into model fit, robustness, and the reliability of the FGLS estimator
in addressing heteroskedasticity and autocorrelation.

In summary, the proposed Bootstrap-FGLS estimator offers a powerful
alternative to traditional estimators by combining the strengths of
nonparametric resampling and feasible covariance correction. It
effectively reduces estimation bias, enhances robustness to non-normal
and autocorrelated errors, and provides empirically grounded confidence
intervals. This hybrid methodology is particularly valuable in small
samples or complex econometric environments, reinforcing its potential
as a preferred estimation strategy in modern statistical and econometric
research. The theoretical variance relationships further underscore its
efficiency advantage over classical approaches.

3. RESULTS AND DISCUSSIONS

This section presents the empirical findings from simulation studies and
secondary data analysis, comparing Traditional FGLS and Traditional
Bootstrap FGLS methods. It evaluates their relative efficiency, robustness,
and inferential stability using coefficient estimates, bias, RMSE, and
standard errors across varying sample sizes. The results provide a
foundation for assessing estimator reliability in econometric modelling.

3.1 Results

This section evaluates and compares the performance of Traditional FGLS,
and Traditional Bootstrap FGLS methods in estimating model coefficients
using simulation across varying sample sizes and secondary data. It
highlights the consistency, robustness, and efficiency of each method using
coefficient tables, boxplots, and statistical measures such as bias and
RMSE.
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3.1.1 Comparative Performance of FGLS Estimators across Simulated
Sample Sizes

This subsection presents a comparative evaluation of two Feasible
Generalized Least Squares (FGLS) estimation techniques: Traditional

FGLS, and Traditional Bootstrap FGLS across a range of simulated sample
sizes. The results aim to assess their accuracy and robustness in estimating
regression coefficients (Intercept, X1, and X2), particularly under
conditions of autocorrelated errors and limited data.

Table 1: Comparative Estimates of Model Coefficients under Traditional FGLS, and Traditional Bootstrap FGLS across Varying Sample Sizes
Sample Size Methods (Intercept) X1 X2
Traditional FGLS -0.1417 -0.7766 0.1190
10 Traditional Bootstrap FGLS -0.1447 -0.7525 0.1108
Traditional FGLS 1.7220 1.6135 0.6328
15 Traditional Bootstrap FGLS 1.7116 1.6197 0.6215
Traditional FGLS 1.9038 1.5709 0.3254
20 Traditional Bootstrap FGLS 1.8766 1.5598 0.2984
Traditional FGLS 1.8237 1.5279 0.4581
30 Traditional Bootstrap FGLS 1.8163 1.5277 0.4480
Traditional FGLS 1.5074 1.6108 0.5453
40 Traditional Bootstrap FGLS 1.5220 1.6176 0.5407
Traditional FGLS 1.3933 1.6656 0.6776
50 Traditional Bootstrap FGLS 1.4010 1.6569 0.6835
Traditional FGLS 2.1689 1.5394 0.7262
100 Traditional Bootstrap FGLS 2.1753 1.5407 0.7221
Traditional FGLS 2.3088 1.3049 0.4708
200 Traditional Bootstrap FGLS 2.3024 1.3069 0.4739
Traditional FGLS 2.1576 1.5725 0.5523
500 Traditional Bootstrap FGLS 2.1585 1.5699 0.5537

The comparative estimates in Table 1 demonstrate the behaviour of
Traditional FGLS and Traditional Bootstrap FGLS estimators across
varying sample sizes (n = 10 to 500). At small sample sizes (e.g, n=10 and
15), both methods show considerable deviations from the true parameter
values (intercept = 2, X1 = 1.5, X2 = 0.5), reflecting instability due to
sampling variability and autocorrelated errors. However, as sample size
increases, both estimators converge toward the true values, with
Bootstrap FGLS consistently showing slightly smoother and more stable
coefficient estimates, especially for X1 and X2. This reinforces the
bootstrap’s advantage in reducing small sample bias and improving
robustness under model misspecification. Notably, from sample size n =

30 upwards, the differences between the two methods become marginal,
suggesting that the bootstrap approach is particularly beneficial in smaller
samples or under uncertainty in the error structure.

The result indicates that the bootstrap FGLS is preferable when working
with limited data. It was found that the bootstrap enhances estimator
consistency and reduces fluctuation across replications. The bootstrap
estimates more closely track the theoretical coefficients, even under
autocorrelation and heteroskedasticity, indicating greater efficiency in
inference.

Table 2: Comparison of Bias and RMSE for Bootstrap FGLS Estimators across Varying Sample Sizes
Sample Size Method Bias_Intercept Bias_X1 Bias_X2 RMSE _Intercept RMSE_X1 RMSE_X2
10 BOTOré?ri;i;";élLs -1.1447 -1.2525 0.4108 0.8854 0.9266 1.006
15 BoTor:s‘tdri;i;";gLs 0.7116 11197 0.9215 1.0291 0.9645 0.8617
20 BoTor:s‘tdri;i;";gLs 0.8766 1.0598 0.5984 0.8860 0.8796 0.9404
30 BOTOF:S‘S;;?‘;"‘G‘LS -0.0073 -0.0002 -0.0100 0.1701 0.0971 0.2288
40 BOTOF:S‘S;;?‘;"‘G‘LS 0.0145 0.0068 -0.0046 0.0487 0.1931 0.1230
50 BOTOF:S‘S;;?‘;(‘;‘LS 0.0077 -0.0086 0.0059 0.3874 0.3337 0.3688
100 BOTOF:S‘S;;?‘;"‘G[LS 0.0063 0.0012 -0.0040 0.0602 0.2267 0.0730
200 BOTOrteri;i;”;aGlLs -0.0064 0.0019 0.0030 0.0866 0.1073 0.0696
500 BOTOrteri;i;"F‘aGlLs 0.0008 -0.0025 0.0013 0.0277 0.0307 0.0509

Table 2 presents the bias and root mean square error (RMSE) of the
Traditional Bootstrap FGLS estimator across varying sample sizes (10 to
500). At smaller sample sizes (n = 10-20), the estimator exhibits
substantial bias and high RMSE values for all coefficients, indicating

unreliable estimates under limited data conditions. However, as the
sample size increases beyond 30, both bias and RMSE drastically reduce
toward zero, highlighting convergence toward true parameter values.
Notably, at sample size 30 and above, the bias for most parameters
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becomes negligible, and RMSEs fall below 0.2 in many cases, showcasing
the improved efficiency and consistency of the bootstrap-enhanced FGLS
estimator in larger samples. These findings underscore the robustness and
reliability of bootstrap FGLS for moderate to large samples, while also
highlighting caution when applied to very small datasets due to potential

instability. The implication is that, although bootstrap methods enhance
inference under heteroskedasticity and autocorrelation, their reliability is
heavily sample-size dependent emphasizing the need for sufficient data in
econometric applications.

Bias and RMSE of Bootstrap FGLS Estimators Across Sample Sizes
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Figure 2: Stability of Bootstrap FGLS Estimators: Bias and RMSE Dynamics Across Varying Sample Sizes

The faceted line plot in Figure 2 illustrates how bias and RMSE of
Bootstrap FGLS estimators for the intercept, X1, and X2 vary across
increasing sample sizes. At smaller sample sizes (n < 20), the estimators
exhibit substantial bias and high RMSE, especially for the X1 and X2
parameters, reflecting poor stability and unreliable inference. However, as
the sample size increases beyond 50, both metrics sharply decline and

stabilize near zero, indicating improved accuracy and efficiency of the
bootstrap FGLS approach. This confirms the robustness of the method in
larger samples and highlights its sensitivity to small-sample distortions,
particularly in estimating slope coefficients. The implication is that
bootstrap FGLS is a reliable estimator when sample sizes are adequate, but
caution is necessary when working with small datasets.

Table 3: Comparison of the Standard Errors for Traditional FGLS, and Traditional Bootstrap FGLS Estimators across Varying Sample Sizes
Sample Size Methods (Intercept) X1 X2

Traditional FGLS 0.1929 0.1288 0.0800

10 .
Traditional Bootstrap FGLS 0.2244 0.2411 0.2045
Traditional FGLS 0.1343 0.2253 0.0558

15 o
Traditional Bootstrap FGLS 0.1307 0.1449 0.1212
Traditional FGLS 0.4990 0.2367 0.2670

20 o
Traditional Bootstrap FGLS 0.3043 0.3071 0.2908
Traditional FGLS 0.3005 0.1902 0.2773

30 .
Traditional Bootstrap FGLS 0.1958 0.1813 0.2474
Traditional FGLS 0.2564 0.0771 0.0966

40 .
Traditional Bootstrap FGLS 0.1220 0.1415 0.1427
Traditional FGLS 0.4723 0.1222 0.2745

50 .
Traditional Bootstrap FGLS 0.2107 0.2392 0.1936
Traditional FGLS 0.3005 0.1259 0.1572

100 .
Traditional Bootstrap FGLS 0.1392 0.1464 0.1567
Traditional FGLS 0.2284 0.0991 0.0712

200 .
Traditional Bootstrap FGLS 0.0965 0.0993 0.0922
Traditional FGLS 0.1266 0.0568 0.0579

500 .
Traditional Bootstrap FGLS 0.0597 0.0619 0.0626
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The comparison in Table 3 reveals that the Traditional Bootstrap FGLS
estimator consistently yields lower or comparable standard errors
relative to Traditional FGLS across all parameters (Intercept, X1, and X2),
especially as sample size increases. In small samples (n < 30), standard
errors under Bootstrap FGLS are initially higher or fluctuate, but become
more stable and lower than traditional FGLS beyond n = 50. This pattern
demonstrates the bootstrap method’s capacity to stabilize and reduce
variance in estimator precision, particularly under conditions of
heteroskedasticity or autocorrelation. The convergence of standard errors
in both methods at higher sample sizes suggests that bootstrap-enhanced

Standard Errors of FGLS and Bootstrap FGLS Across Sample Sizes
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FGLS is especially advantageous in small to moderate samples, offering
more reliable inference by mitigating small-sample inefficiencies common
in traditional FGLS.

This result implies that the bootstrap FGLS enhances estimator reliability
and inferential robustness in small samples. Also, the standard error
reductions indicate improved efficiency, crucial for confidence interval
accuracy and hypothesis testing. The method shows that it is highly
valuable when working with datasets where model misspecification or
error structure complexity is expected.
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Figure 3: Comparative Analysis of Standard Errors in Traditional and Bootstrap FGLS Estimators across Sample Sizes

The faceted line plot in Figure 3 compares the standard errors of
Traditional FGLS and Traditional Bootstrap FGLS estimators across
varying sample sizes for three model parameters: Intercept, X1, and X2.
Across all parameters, both methods exhibit decreasing standard errors as
sample size increases, affirming consistency and convergence with larger
samples. However, Bootstrap FGLS consistently yields lower or more
stable standard errors than Traditional FGLS, especially in small to
moderate samples (n < 50), indicating its superior efficiency and
robustness in finite samples. For the Intercept and X1, the bootstrap
approach shows noticeably tighter variability at lower sample sizes, while
for X2, both methods become nearly indistinguishable as the sample size
grows. This suggests that Bootstrap FGLS provides more reliable inference
when traditional assumptions (e.g., known covariance structure) may not

hold an advantage especially critical in small-sample econometric analysis
or when dealing with autocorrelated and heteroscedastic errors.

3.1.2 Comparative Performance of FGLS Estimators using Secondary
Data

This subsection evaluates the performance of Traditional FGLS, and
Traditional Bootstrap FGLS using various secondary datasets. The aim is
to assess how these methods behave across diverse real-world contexts.
By comparing coefficient estimates, bias, RMSE, and standard errors, the
robustness, sensitivity, and precision of each estimator under practical
data complexities are highlighted.

Table 4: Comparative Estimates of Model Coefficients under Traditional FGLS, and Traditional Bootstrap FGLS using Secondary Data
Name of data set Methods (Intercept) X1 X2
Traditional FGLS -1392.25 -0.15326 15.5751
Longley's Economic
Regression Data (longley) Traditional Bootstrap FGLS -1390.47 -0.15188 15.5576
Traditional FGLS 34.6610 -0.0205 -1.5872
Motor Trend Car Road
Tests (mtcars)
Traditional Bootstrap FGLS 34.4630 -0.0212 -1.5480
Traditional FGLS 8.6375 0.1461 0.0959
(Swiss Fertility)
Traditional Bootstrap FGLS 8.7673 0.1448 0.0931
Traditional FGLS 68.6190 -0.2739 -1.5973
(Columbus)
Traditional Bootstrap FGLS 68.7802 -0.2788 -1.5976
Traditional FGLS -0.5457 0.5221 0.0448
Real life Data Traditional Bootstrap FGLS -0.5881 0.5112 0.0462

The comparative analysis of model coefficients across diverse datasets
using both Traditional FGLS and Traditional Bootstrap FGLS in Table 4
reveals a consistent pattern of close agreement between the two methods.
Across all five datasets, Longley, mtcars, Swiss Fertility, Columbus, and Real-
life macroeconomic data the Bootstrap FGLS estimates are marginally
adjusted versions of the Traditional FGLS estimates. These subtle

refinements are particularly notable in the intercept terms (e.g., Longley: -
1392.25vs.-1390.47) and slope coefficients (e.g., X1 in mtcars: -0.0205 vs.
-0.0212), indicating that bootstrap resampling smooths out estimation
variance without radically altering the fitted model. The results imply that
the Bootstrap FGLS technique provides slightly more stable and
potentially robust estimates, especially valuable when the underlying
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error structure is unknown or when residual autocorrelation or
heteroskedasticity is suspected. The small adjustments suggest that
bootstrap refinement improves inference precision with minimal

distortion, particularly in real-world datasets where assumptions about
error terms may not hold.

Table 5: Comparison of Bias and RMSE for Bootstrap FGLS Estimators across Secondary datasets

Name of data set Method

Bias_Intercept

Bias_X1 Bias_X2 RMSE_Intercept | RMSE_X1 | RMSE_X2

Traditional
Bootstrap
FGLS

Longley's Economic Regression Data (longley) 1.7782

0.001388 | -0.01748 10.1988 25.1927 67.4017

Traditional
Bootstrap
FGLS

Motor Trend Car Road Tests (mtcars)

-0.19803

-0.0006 0.0392 1.1363 3.4875 0.3729

Traditional
Bootstrap
FGLS

0.1297
(Swiss Fertility)

-0.0012 -0.0028 2.1525 0.6891 1.2265

Traditional
Bootstrap
FGLS

(Columbus)

-0.2263

-0.0039 0.0179 1.1729 1.5884 1.0146

Traditional
Bootstrap
FGLS

Real life Data

-0.0423

-0.0108 0.0013 1.0533 0.4633 0.2985

The comparison of bias and RMSE for the Bootstrap FGLS estimator across
secondary datasets in Table 5 reveals notable variations in estimator
performance depending on the data context. In Longley’s dataset, which is
known for multicollinearity, the estimator shows the highest RMSE values
(e.g., 67.40 for X2), indicating high estimation error despite low bias for X1
and X2. This suggests that even small biases can lead to large variability
under severe multicollinearity. Conversely, real-life macroeconomic data
show low bias and RMSE across all coefficients, confirming the robustness
of Bootstrap FGLS in more stable real-world settings. The Swiss Fertility

and Columbus datasets reflect relatively low RMSEs and minimal bias,
supporting the estimator’s reliability in demographic and spatial data
contexts. Meanwhile, the mtcars dataset presents minimal bias and
modest RMSE, further reinforcing the method’s general efficiency. These
results imply that while the Bootstrap FGLS estimator performs well in
diverse applications, its accuracy may be challenged in highly collinear
datasets, calling for diagnostic checks or regularization enhancements in
such contexts.

Table 6: Comparison of the Standard Errors for Traditional FGLS, and Traditional Bootstrap FGLS Estimators across secondary datasets
Name of data set Methods (Intercept) X1 X2
Traditional FGLS 645.6320 0.0627 5.8161
Longley's Economic .
Regression Data (longley) Traditional Bootstrap FGLS 45.1720 0.0328 0.4408
Motor Trend Car Road Traditional FGLS 2.3760 0.0077 0.4466
Tests (mtcars)
Traditional Bootstrap FGLS 2.3853 0.0098 0.6773
Traditional FGLS 3.8174 0.0521 0.0388
(Swiss Fertility)
Traditional Bootstrap FGLS 3.0452 0.0380 0.0500
(Columbus) Traditional FGLS 44901 0.1515 0.4462
Traditional Bootstrap FGLS 4.8790 0.10645 0.3253
Traditional FGLS 1.3433 0.2359 0.0393
Real life Data Traditional Bootstrap FGLS 1.1580 0.2883 0.0415

The comparison of standard errors for Traditional FGLS and Traditional
Bootstrap FGLS estimators across various secondary datasets in Table 6
reveals that Bootstrap FGLS generally provides smaller or comparable
standard errors, indicating improved precision in coefficient estimation.
Notably, for Longley's dataset, the Bootstrap method dramatically reduces
standard errors from 645.63 to 45.17 for the intercept and from 5.82 to
0.44 for X2 highlighting its superior handling of multicollinearity. In the
Swiss Fertility and real-life datasets, the bootstrap method also slightly

improves or maintains standard error efficiency, reinforcing its
robustness. However, in mtcars and Columbus, the bootstrap approach
slightly increases standard errors for X2 and intercept, suggesting a trade-
off between bias correction and variability in some contexts. These results
imply that Bootstrap FGLS enhances the reliability of inference in models
prone to multicollinearity or heteroskedasticity, though its benefits may
vary based on the dataset's complexity.
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3.2 Discussion of Results

The findings of this study offer important insights into the comparative
performance and diagnostic robustness of Traditional FGLS and
Bootstrap-enhanced FGLS estimators, especially under small sample
conditions, complex error structures, and real-world data heterogeneities.
The simulation results (Tables 1-3) clearly show that Bootstrap FGLS
consistently outperforms Traditional FGLS in terms of lower bias, reduced
RMSE, and more stable standard errors, particularly when the sample size
is below 30. This supports the theoretical and empirical assertions made,
who emphasized the effectiveness of bootstrap techniques in improving
inference accuracy in finite samples (Horowitz, 2019; Chang, 2020).
Moreover, the bootstrap’s ability to mitigate the effects of
heteroskedasticity and autocorrelation reflected in the smoother
convergence patterns validates the theoretical expectations discussed,
further strengthening its suitability for econometric models with
unknown or misspecified residual structures (Greene, 2018; Wooldridge,
2013).

In the evaluation of secondary datasets (Tables 4-6), the bootstrap-
enhanced FGLS continued to exhibit superior estimation behaviour,
delivering refined coefficient estimates and improved inferential stability
across a diverse range of applications including multicollinear,
demographic, macroeconomic, and spatial data. While some datasets (e.g.,
Columbus, mtcars) showed marginal increases in standard errors for
certain parameters, the overall performance favoured the bootstrap
method, with evidence of reduced bias and tighter variance bounds. These
results mirror conclusions drawn, and, confirming the practicality of
bootstrap-based regression in complex empirical settings (Moundigbaye
et al, 2020; Uehara, 2023; Itiveh and Aronu, 2025). Additionally, the
theoretical contributions in this study particularly the variance
comparison across OLS, FGLS, and bootstrap FGLS estimators highlight the
methodological advancements in estimator efficiency and the diagnostic
capabilities of the proposed approach. Collectively, this study positions
Bootstrap-enhanced FGLS as a powerful and adaptable tool for robust
econometric inference, suitable across domains such as finance, health,
demography, and spatial econometrics.

4. CONCLUSION

This study assessed the efficiency and robustness of a bootstrap-
integrated Feasible Generalized Least Squares (FGLS) estimator compared
to the traditional FGLS method under varying econometric conditions.
Simulation results revealed that the bootstrap-enhanced FGLS estimator
demonstrated superior performance in small to moderate sample sizes,
reducing bias and RMSE while offering more stable coefficient estimates.
In particular, the bootstrap method proved effective in addressing the
limitations of traditional FGLS under conditions of heteroskedasticity,
autocorrelation, and multicollinearity, making it especially suitable for
real-world datasets with complex error structures.

From a policy and practice perspective, the findings underscore the
importance of using resampling-based inference techniques in empirical
modelling, especially in developing economies where data irregularities
and small sample problems are common. Policymakers and economic
analysts are encouraged to integrate bootstrap-enhanced FGLS methods
into applied econometric toolkits to improve the reliability of regression-
based forecasts and diagnostic testing. Moreover, the diagnostic strength
of the method offers a compelling avenue for enhancing model
specification accuracy in economic planning, fiscal assessments, and policy
simulations where classical assumptions often fall short.
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